Annex 6 Flood Risk and Drainage Assessment

Mey BESS

Flood Risk & Drainage Assessment Report

Client:	Simec Atlantis Energy
Project/Proposal No:	GON.0191.0136
Version:	1
Date:	02/11/2023

Document Information

Project Name:	Mey BESS			
Site Address:	Land 500m West of Phillips Mains Mey			
Document Title:	Flood Risk & Drainage Assessment			
Client Name:	Simec Atlantis Energy			
Agent Name:	ITP Energised			
Document Status:	Draft			
Author:	Rose Briggs			
Reviewed:	Stephen Donnan			
Approved:	Zak Ritchie			
Approver Qualifications:	B.Eng(hons), MSc, C.Eng, C.WEM, MCIWEM			
Date:	02/11/2023			
Version:	1			
Project Number:	GON.0191.0136			

Revision History

Version	Date	Authored	Approved	Notes
1	02/11/2023	Rose Briggs	Zak Ritchie	Draft

The contents of this document are confidential to the addressed recipient and may not be revealed. This document may contain confidential information. If received in error, please delete it without making or distributing copies. Opinions and information that do not relate to the official business of Gondolin Land and Water Ltd, registered at 35/1 Balfour Street, EH6 5DL, are not endorsed by the company.

Limitation: This document has been prepared exclusively for the use of the Client and any party with whom a warranty agreement has been executed, or an assignment has been agreed. No other parties may rely on the contents of this document without written approval from Gondolin Land and Water Ltd for which a payment may be applicable. Gondolin Land and Water Ltd accepts no responsibility or liability for the consequences of use of this document for any purpose other than that for which it was authorised, nor the use of this document by any third party with whom an agreement has not been reached.

© Copyright 2023 Gondolin Land and Water Ltd. The concepts and information contained in this document are the property of the company. Use or copying of this document in whole or in part without the written permission of Gondolin Land and Water Ltd constitutes an infringement of copyright unless otherwise explicitly agreed by contract.

Contents

Doc	ument	Information	2
Con	tents		3
1.	Intro	duction	5
	1.1	Preamble	5
	1.2	Site Context	5
	1.3	Development Details	5
	1.4	Topography	5
	1.5	Geology and Hydrogeology	6
	1.6	Local Hydrology	6
2.	Plan	ning & Policy Context	6
	2.1	Overview	6
	2.2	National Planning Framework	7
	2.3	SEPA Flood Risk and Land Use Vulnerability Guidance	7
3.	Floo	d Risk Assessment	8
	3.1	Screening Assessment of Potential Source of Flood Risk	8
	3.2	Climate Change	10
4.	Prop	oosed Surface Water Drainage Design	11
	4.1	Sustainable Drainage Systems (SuDS)	11
	4.2	Design Overview	11
	4.3	SuDS Performance Review	13
	4.4	Upgradient Interception Drainage	14
	4.5	Drainage Maintenance Strategy	16
5.	Clos	ure	18

Document References

Tables

Table 1 Flood Risk Screening Assessment	10
Table 2 Suitability of Surface Water Disposal Methods	12
Table 3 Estimation of the Greenfield (Pre-Development) Rate of Runoff	13
Table 4 SuDS Water Quality Design Criteria: Index Approach Review	13
Table 5 SuDS Attenuation Basin Summary Design Details	14
Table 6 SuDS Attenuation Basin - Hydraulic Modelling Summary	14
Table 7 Ditch Capacity for Overland Flow Conveyance	16
Table 8 SuDS Basin Maintenance Requirements	16
Table 9 Cut-off Ditch Maintenance Requirements	.17

Appendices

Appendix A – Proposed Development Plan Appendix B – Microdrainage Modelling Extracts Appendix C – The Highland Council Compliance Certificates and SEPA FRA Checklist

Drawings

Drawing FRDA-001 – Site Location Plan Drawing FRDA-002 – Hydrological Overview Drawing FRDA_003 – Proposed Drainage Layout

1. Introduction

1.1 Preamble

Gondolin Land and Water Ltd (Gondolin) has been appointed by ITP Energised on behalf of Simec Atlantis Energy (the Client) to undertake a Flood Risk and Drainage Assessment (FRDA) to support a planning application for a Battery Energy Storage Site (BESS) near the village of Mey, Caithness at a site known as Mey BESS.

The site was visited by an experienced Hydrologist and Civil Engineer in July 2023 in to inform this assessment.

This report addresses any potential flood risk to the proposed developments from all possible sources in accordance with best practice and in accordance with guidance presented within the National Planning Framework for Scotland 4 (NPF4)¹.

This report provides the relevant design information for the proposed site surface water drainage / SuDS scheme taking due cognisance of local / national drainage design guidance (CIRIA Report C753) and The Highland Council (THC) specific guidance².

Competed THC compliance certificate and SEPA flood risk assessment checklist are included as Appendix C to this report.

1.2 Site Context

The site is located approximately 1km southeast of the village Mey at approximate National Grid Reference (NGR): ND 29603 72351.

Access to the site is via an unnamed road to the immediate north of the site boundary, which ultimately connects to the A836.

The site comprises agricultural / rough grazing land, bound by woodland to the west. The site is predominately surrounded by further agricultural / rough grazing land.

A site location planning is included as Drawing FRDA-001.

1.3 Development Details

The proposed development is for up to 300 MW containerised battery units, c. 2.6 m high with a total site area of approximately 10 ha. In addition, a proposed building c. 6 m high which will house a 132 kV transformer, security fencing and landscaping works to include Biodiversity Net Gain.

The proposed development will connect to the national grid at the recently consented Gills Bay switching station which is located directly adjacent to the site.

The proposed development plan is included in Appendix A.

1.4 Topography

OS Terrain 5 data has been review and included within the relevant drawings appended to this report. The site falls in a predominantly northern direction with maximum elevations located within the southern site area at approximately 44.5mAOD. The lowest elevations are within the northern site area at approximately 41.0mAOD.

Gondolin Land and Water Ltd | Mey BESS | 02/11/2023

¹ The Scottish Government (2023) National Planning Framework 4, February 2023

² The Highland Council (2013) Flood Risk & Drainage Impact Supplementary Guidance

1.5 Geology and Hydrogeology

1.5.1 Geology

1.5.1.1 Superficial

Review of the British Geological Survey (BGS) online geology maps³ indicates the site is located within an area of Devensian age Till, comprising Diamicton (poorly sorted sediments ranging from clay to boulders in size). There are records of Peat and localised Hummocky (moundy) Glacial Deposits of Diamiction, sand and gravel in the surrounding area. There are no nearby BGS borehole logs to confirm the local geology underlying the site.

1.5.1.2 Bedrock

Review of the BGS online geology maps indicates that the bedrock geology underlying the site is encompassed by the sedimentary Mey Flagstone Formation, comprising sandstone, siltstone and mudstone of Devonian age. There are no nearby BGS borehole logs to confirm the local geology underlying the site.

1.5.2 Hydrogeology

Review of the BGS online hydrogeology maps indicates that the underlying bedrock geology is a moderately productive aquifer characterised by sandstones, in places flaggy, with siltstones, mudstones and conglomerates as well as interbedded lavas, locally yielding small amounts of groundwater with the flow mechanism predominantly being through fractures and other discontinuities.

1.6 Local Hydrology

Review of the Flood Estimation Handbook (FEH) Web Service⁴ and other available mapping shows there are no major watercourses within the development area. Several minor drains are noted along the site boundary in addition to a minor drain running through the site from southwest to northeast.

The local minor drain network drains the existing land towards the northeast into a main drain along the unnamed road which conveys flows to the northeast and eventually discharging to the Pentland Firth.

Drawing FRDA-002 provides hydrological overview for the site and immediate surroundings.

2. Planning & Policy Context

2.1 Overview

This assessment has been completed in accordance with guidance presented within NPF4 and taking cognisance of the Flood Risk Management (Scotland) Act 2009.

The assessment also references and takes due consideration (where appropriate) of the following principal guidance and policy documents:

- CIRIA (2004) Development and Flood Risk Guidance for the Construction Industry, Report C624;
- Local Flood Risk Management Plan (Cycle 1 2016-2022), Highland & Argyll Local Plan District, June 2016;
- Highland and Argyll Local Flood Risk Management Plan (2022 2028);
- British Standards Institution (2017) Assessing and Managing Flood Risk in Development Code of Practice, Report BS-8533:2017;

³ British Geological Survey (2023) Natural Environment Research Council – Geolndex (onshore) online BGS Map Viewers, available at: https://www.bgs.ac.uk/map-viewers/geoindex-onshore/ (accessed on 24th September 2023)

⁴ UK Centre for Ecology and Hydrology (2022) Flood Estimation handbook Web Service, available at: <u>https://fehweb.ceh.ac.uk/</u> (accessed on 27th September 2023)

- Scottish Environment Protection Agency (2018) Flood Risk and Land Use Vulnerability Guidance (Reference: LUPS-GU24), Version 4, July 2018;
- Scottish Environment Protection Agency (2018) SEPA Development Plan Guidance Note 2a: Development Management Guidance: Flood Risk (Reference: LUPS-DM-GU2a), Version 2, July 2018;
- Scottish Environment Protection Agency (2023) Climate Change Allowances for Flood Risk Assessment in Land Use Planning (Reference: LUPS-CC1), Version 3, April 2023;
- Scottish Environment Protection Agency Flood Risk Management Plan Highland and Argyll Local Plan District (2021); and
- Scottish Environment Protection Agency (2022) Technical Flood Risk Guidance for Stakeholders (Reference: SS-NFR-P-002) June 2022.

It is noted that the recent release of NP4 has resulted in potential incompatibility of current SEPA and other stakeholder guidance documents with regards to flood risk assessment in particular. SEPA have acknowledged that their current guidance documents are currently being reviewed / updated to align with NPF4 and information contained within their documents may no longer be valid.

2.2 National Planning Framework

This report has been prepared in accordance with NPF4 Policy 22 relating to Flood Risk and Water Management, which states:

"Policy Intent:

To strengthen resilience to flood risk by promoting avoidance as a first principle and reducing the vulnerability of existing and future development to flooding.

Policy Outcomes:

- > Places are resilient to current and future flood risk.
- > Water resources are used efficiently and sustainably.
- > Wider use of natural flood risk management benefits people and nature."

Furthermore, NP4 states that development proposals at risk of flooding or in a flood risk area will only be supported if they are for:

- "Essential infrastructure where the location is required for operational reasons;
- Water compatible uses;
- Redevelopment of an existing building or site for an equal or less vulnerable use; or.
- Redevelopment of previously used sites in built up areas where the LDP has identified a need to bring these into positive use and where proposals demonstrate that longterm safety and resilience can be secured in accordance with relevant SEPA advice".

2.3 SEPA Flood Risk and Land Use Vulnerability Guidance

2.3.1 Context

This guidance outlines how SEPA assess the vulnerability to flooding of different land use with the following categories:

- Most Vulnerable Uses;
- Highly Vulnerable Uses;
- Least Vulnerable Uses;
- Essential Infrastructure; and
- > Water Compatible uses.

The following paragraphs are extracted from the guidance for context:

"This guidance classifies land uses according to how they are impacted by flooding, i.e. their relative susceptibility and resilience to flooding, and any wider community impacts caused by their damage or loss.

The classification recognises that certain types of development, and the people who use and live in them, are more at risk from flooding than others (e.g. children, the elderly and people with mobility problems that may have more difficulty in escaping fast flowing water).

The term 'land use vulnerability' is used in this guidance to differentiate between a range of land uses, taking account of flooding impacts on land uses in terms of their relative susceptibility and resilience to flooding. It also reflects wider community impacts caused by their damage or loss. For example, a police station is not more likely to suffer damage (be susceptible) or less able to recover (be resilient) than a comparable office building. However, it is in a more vulnerable category than an office use because a higher value is placed upon the wider community impacts that would be caused by its potential loss or damage during a flood event. Similar considerations apply to the inclusion of hazardous waste facilities within the highly vulnerable category and other waste treatment facilities being within the less vulnerable category."

2.3.2 Proposed Development Suitability

With reference to Table 1 (SEPA Land Use Vulnerability Classification)⁵ of the guidance the proposed developed is considered **Essential Infrastructure** category.

With reference to Table 2 (SEPA Matrix of Flood Risk) of the guidance, the proposed **<u>Essential</u> <u>Infrastructure</u>** development is suitable within <u>any fluvial flood risk zone</u>, however, for sites located in 'medium' to 'high' risk (i.e. >0.5% AEP) within sparsely developed and / or undeveloped areas the following criteria applies:

"Generally suitable where a flood risk location is required for operational reasons and an alternative lower-risk location, is not available – development should be designed and constructed to be operational during floods (i.e. 0.5% AEP), and not impede water flow."

3. Flood Risk Assessment

3.1 Screening Assessment of Potential Source of Flood Risk

3.1.1 Overview

There are a number of potential sources of flooding which should be evaluated in accordance with best practice and NPF4 such as:

- Flooding from rivers or fluvial flooding;
- Flooding from the sea or tidal / coastal flooding;
- Flooding from land;
- Flooding from groundwater;
- Flooding from sewers; and
- > Flooding from reservoirs, canals, and other artificial sources.

The flood risk from each of these potential sources is discussed in the following sections and a 'screening assessment' is presented in Section 3.1.8 which confirms any potential flood risk sources requiring a more detailed analysis and specification of bespoke mitigation measures.

Flood 'risk' definitions within the screening exercise are based on a qualitative technical assessment taking into account the information reviewed, risk to site users and the Proposed Development itself.

⁵ Scottish Environment Protection Agency (2018): Flood Risk and Land Use Vulnerability Guidance

3.1.2 Fluvial Flooding

Review of SEPA's Online Flood Map⁶ for Fluvial Flooding at the site indicates that the site does not fall within an area susceptible to flooding from this source. SEPA's river flood maps do not include modelling of flooding from smaller watercourses with a catchment area of less than 3km². As the local minor drains are below this threshold, no fluvial flood risk is identified for these watercourses. These minor drains all readily convey flow away from site, following the topography of the local area.

Taking this into account it is considered that there is 'Low Risk' of fluvial flooding to the site and therefore will not considered further in the assessment.

3.1.3 Tidal/Coastal Flooding

Review of SEPA's Coastal Flooding Map for the site indicates that the site is located sufficiently inland from tidally influenced waters and the coast, thus is not subject to tidal or coastal flood risk and designated as **'Low Risk'** to the site.

Flooding from this source is therefore not considered further in the assessment.

3.1.4 Flooding from Land (Pluvial or Surface Water Flooding)

Review of SEPA Surface Water Flood Map shows no area of significant surface water accumulation within or upgradient of the site boundary. Due to the topography of the site sloping generally to the north, any surface water run-off would readily flow off site or be intercepted by one of the existing minor drains and conveyed downgradient of the site.

Taking the above into account it is considered that there is '**Low Risk**' of surface water flooding to the site and is therefore not considered further.

3.1.5 Groundwater Flooding

Review of SEPA's Groundwater Flood Map shows that the site and surrounding area are not located in an area identified to be at risk of groundwater flooding.

Taking the above into account it is considered that the development site is at **'Low Risk'** of groundwater flooding and therefore this source is not considered further in the assessment.

3.1.6 Flooding from Sewers / Drainage Systems

Given the rural nature of the development, no public sewers are located within the immediate vicinity.

Taking the above into account it is considered that there is '**No Risk**' of flooding to the site from sewers and drainage systems and therefore this source is not considered further in the assessment.

3.1.7 Flooding from Infrastructure Failure / Blockage

Review of SEPA's Reservoir Flood Mapping indicates that there are no significant impoundments of water immediately upgradient and in hydraulic continuity with the site which would pose a flood risk to the site in the event of failure.

There are no other known water infrastructure features at / in proximity to the site which would pose a material flood risk in the event of failure.

As such it is considered that the development site is at '**No Risk**' of flooding from this source and therefore is not considered further in the assessment.

3.1.8 Flood Risk Screening Assessment Review

A summary of the potential flood risk to the site from the sources reviewed in presented in Table 1 below.

Gondolin Land and Water Ltd | Mey BESS | 02/11/2023

⁶ SEPA Flood Maps (2023), available at: <u>https://www.sepa.org.uk/environment/water/flooding/flood-maps/</u> (accessed on 24th July 2023)

This 'Screening Assessment' is used to identify if any sources of flood risk are required to be investigated in more detail i.e., a 'Technical' more detailed assessment which would include consideration / specification of bespoke flood mitigation measures for the site development.

Table 1 Flood Risk Screening Assessment

Potential Flood Source	Screening Assessment of Flood Risk at Site ¹	Requiring Further Consideration i.e. Technical Assessment?
Fluvial flooding	Low Risk	No
Tidal flooding	Low Risk	No
Flooding from land	Low Risk	No
Groundwater flooding	Low Risk	No
Flooding from sewers / artificial drains	No Risk	No
Flooding due to infrastructure failure / blockage	No Risk	No

Notes: 'only Flood Risks designated as being 'Medium' or 'High' warrant further investigation

The Screening Assessment confirms that all potential sources of flooding are considered to have 'No' or 'Low' risk of flooding to the site and therefore no further assessment is required.

3.2 Climate Change

3.2.1 Context

The most recent Climate Change (CC) projections published by The UK Climate Impacts Programme are presented in report 'UKCP18'. Central estimates published in UKCP18 indicate marked increases in winter rainfall and decrease in summer rainfall but with more intense storms under all CO2 emissions scenarios across the majority of the country.

SEPA's most recent climate change allowances were published in April 2023⁷ and are based on UKCP18 findings in conjunction with The Centre for Ecology and Hydrology's (CEH) 2020 study⁸.

A climate change allowance in drainage and flood risk assessment terms is a prediction of anticipated change in peak river flow, peak rainfall intensity and sea level rise caused by future climate change.

The allowances applied for sea level rise, peak river flow and peak rainfall intensity are determined by river basin regions across Scotland. SEPA have developed a web map⁹ to allow any location in Scotland to be identified for its applicable river basin region and respective climate change uplift allowances.

3.2.2 Peak River Flow

With reference to SEPA's online map service, the site is located within the North Highland basin region. The peak river flow allowance until 2100 for this region is a 40% uplift.

This increase in peak river flows will not increase the fluvial flood risk to the site due to the absence of larger watercourses within the area (to which the peak river flow uplifts are applied to).

3.2.3 Peak Rainfall Intensity

Using SEPA's online map service, the site is located within the North Highland Basin region of Scotland. The peak rainfall intensity allowance until 2100 for this region is a 42% uplift.

 ⁷ Scottish Environment Protection Agency (2019) Climate change allowances for flood risk assessment in land use planning
⁸ Centre for Ecology & Hydrology (2021) Climate change impacts on peak river flows: Combining national-scale hydrological modelling and probabilistic projections

⁹ SEPA Climate Change Allowances for Flood Risk Assessment in Land Use Planning:

https://scottishepa.maps.arcgis.com/apps/webappviewer/index.html?id=2ddf84e295334f6b93bd0dbbb9ad7417 (accessed on 24th July 2023)

This increased rainfall intensity is appropriately factored into the proposed SuDS strategy / drainage design.

3.2.4 Sea Level Rise

Using SEPA's online map service, the site is located within the North Highland basin region. The cumulative sea level rise allowance until 2100 for this region is a 0.89m uplift.

This increase in predicted Sea Level rise will not increase the coastal flood risk to the site due to the distance from the site to the closest tidally influenced waters.

4. Proposed Surface Water Drainage Design

4.1 Sustainable Drainage Systems (SuDS)

To satisfy the requirements of current best national / local flood risk and surface water management guidance, SuDS are required to be incorporated into the design proposals to manage, attenuate, and treat surface water runoff before discharging from the site.

Current best practice guidance relating to sustainable surface water management is outlined in the SuDS Manual (CIRIA Report C753) which provides details on the use of SuDS for managing surface water runoff.

The SuDS Manual identifies a hierarchy of SuDS for managing runoff, which is commonly referred to as a 'management train' as outlined below:

- Prevention the use of good site design and housekeeping measures on individual sites to prevent runoff and pollution (e.g. minimise areas of hard standing).
- Source Control control of runoff at or very near its source (such as the use of rainwater harvesting, permeable paving and green roofs).
- Site Control management of water from several sub-catchments (including routing water from roofs and car parks to one / several soakaways or attenuation ponds for the whole site).
- Regional Control management of runoff from several sites, typically in a retention pond or wetland.

It is generally accepted that the implementation of SuDS as opposed to conventional drainage systems, provides several benefits by:

- reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream;
- reducing the volumes and frequency of water flowing directly to watercourses or sewers from developed sites;
- improving water quality over conventional surface water sewers by removing pollutants from diffuse pollutant sources;
- reducing potable water demand through rainwater harvesting;
- improving amenity through the provision of public open spaces and providing biodiversity and wildlife habitat enhancements; and
- > replicating natural drainage patterns, including the recharge of groundwater so that base flows are maintained.

4.2 Design Overview

The proposed drainage / SuDS scheme for the proposed development will comprise the management of surface water runoff from the proposed infrastructure areas and site tracks.

The proposed development will be drained via a herringbone drainage system conveying flows to a SuDS attenuation basin. The development area and site tracks will be constructed with semipermeable materials to allow rainwater to infiltrate into the underlying makeup where it will be

intercepted by the perforated pipework. The attenuation basin will provide suitable treatment and attenuation prior to discharge to the adjacent minor drain at the northeast corner of the site.

Given the siting of the proposed development, there is a risk of runoff from the upgradient undeveloped catchment impacting the development. As such it is proposed to capture these flows via an upgradient cut-off ditch that will discharge to the minor drain to the northeast of the site boundary. This approach mimics the existing hydrological regime of the site area albeit in a more formalised manner.

Drawing FRDA-003 provides an overview of the proposed drainage layout.

4.2.1 Drainage Discharge Locations

The hierarchy for favoured disposal options of surface water runoff from development sites is as follows:

- 1. Infiltration to Ground;
- 2. Discharge to Surface Waters; or
- 3. Discharge to Sewer.

Table 2 below discusses the disposal method suitability in the context of the site and proposed development.

Table 2 Suitability of Surface Water Disposal Methods

Surface Water Disposal Method	Suitability Description	Method Suitable? (Y/N)
Infiltration to Ground	Review of the site geology indicates that superficial deposits at the site are predominantly clay based and are likely to have limited infiltration potential. In addition, the wider local area is known to have peat deposits and local land is generally poorly draining as demonstrated by the presence of minor drains networks in the local area. Therefore, this site is deemed unsuitable for infiltration-based SuDS measures.	Ν
Surface Water Discharge	A minor drain network is located adjacent to the site boundary and downgradient, thus allowing for a gravity connection to be made.	Y
Sewer Discharge	No public sewers are located in the proximity and downgradient of the site to enable a connection to be made.	Ν

Taking the above into account it is proposed that surface water runoff from the development is discharged to the minor drain at along the site boundary to the northeast, replicating the existing site (natural) hydrological regime albeit in a more formalised manner.

4.2.2 Water Quantity Review

Greenfield runoff rates have been estimated through application of methodology outlined in IH R124¹⁰ as set out within the Interim Code of Practice for SuDS (ICP).

The IH R124 method can be used to estimate Greenfield runoff release rates for a range of AEP events, or return periods, by applying regional growth curve factors to the mean annual peak runoff (i.e. QBAR).

The UK hydrological region for the local area is Region 1 therefore the appropriate growth curve factors for this region have been incorporated into the analysis undertaken in the MicroDrainage (2020) software suite¹¹.

¹⁰ Institute of Hydrology Report No. 124 (1994) (IH R124), Flood estimation for small catchments, June 1994

¹¹ MicroDrainage (2020). WinDes Drainage Design and Modelling Software (Version 2020.1.3)

The catchment hydrological characteristics shown in below have been incorporated into the runoff modelling and results are presented below in Table 3 for a range of AEP storm events.

- > Average Annual Rainfall (SAAR): 816mm/year
- > Soil Index: 0.500
- > UK Hydrological Region No. 1

Table 3 Estimation of the Greenfield (Pre-Development) Rate of Runoff

AEP (%)	Return Period (1 in X Years)	Unit Greenfield Runoff Rate (l/s/Ha)		
50	2	6.0		
QB	QBAR			
3.3	30	12.5		
1	100	16.4		
0.5	200	18.6		
0.1	1000	25.0		

In accordance with CIRIA Report C753 (the SuDS Manual) it is proposed to limit surface water discharge from the proposed development to QBAR greenfield rates for all design events up to and including the 0.5 % AEP plus 42% climate change uplift.

The total impermeable area for the proposed development is **6.06 ha**. Accordingly, a **40** I/s discharge rate has been applied to the proposed discharge strategy. This is based on a runoff coefficient (CV) of 0.70 being applied for the development area resulting in an equivalent drained area of 4.24 ha.

4.2.3 Water Quality Review (Simple Index Approach)

In accordance with CIRIA Report C753 it is necessary to undertake a 'Water Quality Risk Management' assessment to determine the suitability of SuDS methods from a water quality perspective. The approach outlined below is based on the 'Simple Index Approach' for discharge to surface waters as detailed in the SuDS Manual (Section 26.7, Tables 26.2 and 26.3).

Table 4 below compares the SuDS Mitigation Indices against the Pollution Hazard Indices for the proposed development. This is based on the application of a detention basin (attenuation basin).

	Pollution Hazard and SuDS Mitigation Indices Comparison							
Land Use	Total Suspended Solids (TSS)		Metals		Hydro-Carbons			
	Pollution Index	Mitigation Index	Pollution Index	Mitigation Index	Pollution Index	Mitigation Index		
Other Roofs (industrial / commercial)	0.3	0.5	0.2	0.5	0.05	0.6		
Low traffic roads	0.5		0.4		0.4			

Table 4 SuDS Water Quality Design Criteria: Index Approach Review

The SuDS Mitigation Index offered by the proposed SuDS is \geq Pollution Hazard Index for each Land Use type and therefore the water quality assessment criteria is satisfied. In addition, further pollution mitigation would be provided from the infiltration process through the site makeup into the herringbone drainage system.

4.3 SuDS Performance Review

4.3.1 Key Design Details

The SuDS attenuation basin has been sized to accommodate the 0.5% AEP plus 42% climate change event. The key design parameters / geometry are summarised in Table 5 below.

Table 5 SuDS Attenuation Basin Summary Design Details

Parameter	Unit	Value	Notes
Depth	m	1.25	As measured from AutoCAD design
Storage Area	m²	2,782	As measured from AutoCAD design
Total Storage Volume	m³	3,086	As measured from MicroDrianage SourceControl
Limiting Discharge Rate	l/s	40.0	To be provided by Hydrobrake Optimum (or similar)
Side Slopes	1 in X	2	Typical basin side slope

At the client's discretion, the geometry and final design of the SuDS basin may be revised at later design stages to provide additional amenity, habitat and biodiversity value by inclusions of a permanent water depth below the inlet and outlet pipes. In any case, the proposed provisional design parameters / geometry above will be provided as a minimum and the discharge rate maintained.

4.3.2 Hydraulic Analysis

The SuDS system has been modelled using the industry standard MicroDrainage software suite and a summary of the modelling results is included as Table 6 below.

АЕР (%)	Max. Water Depth (m)	Freeboard Allowance (mm)	Max Outflow Rate (l/s)	Storage Volume (m³)	Critical Storm Duration (hours)
50	0.224	1026	31.7	496.4	10
10	0.302	948	39.0	676.0	8
3.3	0.387	863	39.9	875.1	10
1	0.517	733	40.0	1184.3	10
0.5	0.612	638	40.0	1414.6	10
0.5 + 37% CC	0.951	299	40.0	2276.4	16

Table 6 SuDS Attenuation Basin - Hydraulic Modelling Summary

The results above confirm that the increased runoff from the development can be adequately contained within the SuDS attenuation basin and limits the discharge to less than the equivalent QBAR (40.0 I/s) for all modelled events. As additional contingency and in accordance with CIRIA Report C753, a suitable freeboard depth from the maximum water level to the basin crest level has been factored into the design.

Full copies of the hydraulic modelling and model details are enclosed as Appendix B.

4.3.3 **Exceedance Flow Considerations**

The SuDS attenuation basin will be designed to provide an exceedance flow route for storm events larger than the design event and available freeboard. The basin design will incorporate a downgradient notch in the functional crest to channel overflow safely from the structure. A discrete short section of drainage ditch will be incorporated into the terrain which will route any overflow down to the minor drain to the immediate north of the SuDS basin.

4.4 Upgradient Interception Drainage

4.4.1 Overview

An effective strategy to intercept, manage and direct overland flow from the upgradient areas of proposed development is the incorporation of a cut-off ditch. This would be in the form of open ditch situated perpendicular to the overland flow (upslope) as indicated on Drawing FRDA-003. As the

overland flow onto the development areas is 'clean' runoff, no formal treatment of the runoff intercepted is required.

The upgradient cut-off ditch will be routed to the northeast of the development area to discharge to the exiting minor drain to the northeast of the site. This approach mimics the existing hydrological regime of the site area albeit in a more formalised manner.

Drawing FRDA-003 provides an overview of the proposed upgradient cut-off ditch as part of the wider proposed drainage strategy.

4.4.2 Catchment Runoff Analysis

Hydrological modelling of the upslope catchment has been undertaken to determine the design 0.5% AEP plus 42% climate change event catchment runoff rate by applying the ReFH2 methodology.

As indicated on Drawing FRDA-003, a cut-off ditch is required to intercept flows along the south eastern extents of the development area. Runoff analysis has been undertaken and the contributing catchment has been calculated using OS Terrain 5 data.

The total upgradient catchment area has been estimated to be approximately 14ha. This catchment area has been applied to the ReFH2 methodology using point descriptor data obtained from the FEH Web Service to determine the design flow with the ditches.

The estimated design flow within the cut-off ditch is approximately 0.31 m³/s.

4.4.3 Cut-off Ditch Outline Sizing

Specification of minimum sizing of the cut-off ditches is necessary to ensure sufficient hydraulic capacity to convey anticipated overland flows for the design storm event. The channel geometry required to convey the anticipated peak flow has been determined through application of Manning's Equation:

$$Q = \frac{1}{n} \frac{A^{5/3}}{p^{2/3}} S_0^{-1/2}$$

Where	Q	=	Flow (m³/s)
	n	=	Manning's coefficient
	А	=	Flow area (mm/hr)
	Р	=	Wetted perimeter (m)
	So	=	Slope

The Manning's 'n' coefficient of the proposed ditch, established from experience and referenced to respected literature¹², has been estimated to be 0.033.

Taking the above into account the minimum required dimensions of the ditch to intercept and convey overland flow around the development have been calculated.

The cut-off ditch will have a minimum bed width and channel depth of 1m with a bank slope gradient of 1:1. Table 7 summarises the peak flow to be conveyed for within the ditches and the corresponding conveyance capacity for the above ditch dimensions.

¹² Chow, V.T. (1959). Open Channel Hydraulics

Table 7 Ditch Capacity for Overland Flow Conveyance

Parameter	Unit	Value	Notes
Channel Gradient	-	0.001	As measured from AutoCAD design adopting minimum gradient along northern ditch as a conservative approach
Design Flow	m³/s	0.32	From ReFH2 analysis, 0.5% plus 42% climate change
Hydraulic Conveyance Capacity	m³/s	1.24	From Manning's equation

The above analysis confirms that the proposed ditch dimensions have sufficient capacity to convey the estimated design flows from upgradient catchment runoff.

4.5 Drainage Maintenance Strategy

4.5.1 Overview

To ensure efficient operation of the proposed surface water management / SuDS scheme, drainage components should be inspected and maintained throughout the life of the development. Regular inspection / maintenance will ensure efficient operation and prevent potential failure / blockage of drainage components.

The following provisional maintenance plan has been developed from best practice guidance, professional experience and information provided in CIRIA Report C753 (The SuDS Manual).

All drainage components will be retained under private ownership, with the Developer remaining responsible for ongoing maintenance. This maintenance schedule will be integrated into the overall site operating and maintenance strategy and tailored / refined over time as required.

The following sections provide maintenance actions for specific drainage elements.

4.5.2 SuDS Attenuation Basin

Table 8 below provides the inspection and maintenance recommendations set out in Table 22.1 of CIRIA Report C753.

Maintenance Schedule	Required Action	Typical Frequency
Regular maintenance	Remove litter and debris	Monthly
	Cut grass - for spillways and access routes	Monthly (during growing season), or as required
	Cut grass - meadow grass in and around basin	Half yearly (spring - before nesting season, and autumn)
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
	Inspect banksides, structures, pipework etc. for evidence of physical damage	Monthly

Table 8 SuDS Basin Maintenance Requirements

Maintenance Schedule	Required Action	Typical Frequency		
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), then annually or as required		
	Check any penstocks and other mechanical devices	Annually		
	Tidy all dead growth before start of growing season	Annually		
	Remove sediment from inlets, outlets and forebay	Annually (or as required)		
	Manage wetland plants in outlet pool - where provided	Annually (as set out in Chapter 23)		
Occasional maintenance	Reseed areas of poor vegetation growth	As required		
	Prune and trim any trees and remove cuttings	Every 2 years, or as required		
	Remove sediment from inlets, outlets, forebay and main basin where required	Every 5 years, or as required (likely to be minimal requirements where effective upstream source control is provided)		
Remedial actions	Repair erosion or other damage by reseeding or re-turfing	As required		
	Realignment of rip-rap	As required		
	Repair/rehabilitation of inlets, outlets and overflows	As required		
	Relevel uneven surfaces and reinstate design levels	As required		

4.5.3 Cut-off Ditches

Table 9 below provides the inspection and maintenance recommendations for the upgradient cutoff ditches.

· · · · · · · · · · · · · · · · · · ·						
Maintenance Schedule	Required Action	Typical Frequency				
Regular Maintenance	Remove litter and debris	Monthly				
	Manage vegetation and remove nuisance plants	Monthly at start, then as required				
	Inspect inlets, outlets and overflows for blockage and clear if required	Monthly				
Occasional Maintenance	Reseed areas of poor vegetation growth	As required				
Remedial Actions	Repair erosion or other damage	As required				

Table	9 Cut-off	Ditch	Maintenance	Requirements
I GIOIC			mannerance	NCGONCINCING

Maintenance Schedule	Required Action	Typical Frequency
	Remove any build-up of sediment	As required

4.5.4 Inspection Chambers and Manholes

It is recommended that inspection chamber and manhole covers are lifted at least yearly to check for debris / silt accumulations and check the drainage runs are flowing freely.

Any silt / debris accumulations should be manually removed, and jet washed where required.

5. Closure

Gondolin Land and Water Ltd (Gondolin) has been appointed by ITP Energised on behalf of Simec Atlantis Energy to undertake a Flood Risk and Drainage Assessment (FRDA) to support an planning application for a Battery Energy Storage Site (BESS) near the village of Mey, Caithness at a Site known as Mey BESS.

In accordance with national planning policy and guidance, all potential sources of flooding to the site have been considered. The Flood Risk Screening confirms that the site is overall of 'low risk' or lower from flooding from all sources and thus no bespoke flood mitigation measures are required.

This report assesses the potential increase in surface water runoff attributed to the proposed development and proposes a surface water management strategy to manage this. The strategy is in accordance with sustainable drainage principles and allows the site to remain free of flooding during design storm events, whilst ensuring no increase of flood risk to offsite receptors and ensures no deterioration of the water environment.

Taking all of the above into account it is considered there is no impediment to the development proposals being granted planning permission on the grounds of flood risk and drainage provision.

Appendix A Proposed Development Plan

Hedgerow Attenuation Pond Fence Main Site Entrance Mixed Native Species Woodland Hedge Temporary Construction Area Battery Container Water Tanks-Power Conditioning Unit-Parking Area Welfare Unit Spares-Communications-Low Voltage Board and Transformer-MeyGen Transformer (Separate Application) **BESS Substation** Site Boundary-Species-Rich Wildflower Meadow -CCTV (indicative) Site Access Tracks

Appendix B

MicroDrainage Modelling Extracts

Gondolin Land & Water Ltd		Page 1
15 Quayside Street	Mey BESS SuDS Design	
Edinburgh		
EH6 6EJ		Micco
Date 02/11/2023 22:01	Designed by SD	
File Mey BESS - S Checked by	ZR Innovyze	Digitigh
Source Control 2020.1.3	_	
Ra	infall Details	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years)	200 Cv (Summer) 0.	.750
Region Scotla	nd and Ireland Cv (Winter) 0.	.840
Ratio R	0.234 Longest Storm (mins) 10	080
Summer Storms	Yes Climate Change %	+42
Tir	ne Area Diagram	
Tota	al Area (ha) 4.240	
Ti Fr	ime (mins) Area om: To: (ha)	
	0 4 4 240	
	0 4 4.240	

©1982-2020 Innovyze

Gondolin Land & Water Ltd		Page 2
15 Quayside Street	Mey BESS SuDS Design	
Edinburgh		
EH6 6EJ		Mirro
Date 02/11/2023 22:01	Designed by SD	
File Mey BESS - S Checked by	ZR Innovyze	Diamage
Source Control 2020.1.3		
<u>M</u>	<u>odel Details</u>	
Storage is Or	line Cover Level (m) 1.250	
Tank	or Pond Structure	
Inve	ct Level (m) 0.000	
Depth (m) Are	a (m²) Depth (m) Area (m²)	
0.000	2168.0 1.250 2782.0	
<u>Hydro-Brake®</u>	<u>Optimum Outflow Control</u>	
Unit	Reference MD-SHE-0265-4000-1250-4000	
Desig	n Head (m) 1.250	
Design	Flow (1/s) 40.0	
	Objective Minimise upstream storage	
A	oplication Surface	
Sump	Available Yes	
Invert	Level (m) 0.000	
Minimum Outlet Pipe Dia	neter (mm) 300	
Suggested Manhole Dia	neter (mm) 1800	
Control Po	Ints Head (m) Flow (l/s)	
Design Point (Ca	lculated) 1.250 40.0	
F	lush-Flo™ 0.441 40.0	
Mean Flow over H	Kick-Flo® 0.908 34.3	
Heali Flow Over 1.		
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	een based on the Head/Discharge relati Should another type of control device n these storage routing calculations w	onship for the other than a will be
Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth (m) Flow (1/s) Depth (m)	Flow (l/s)
0.100 8.4 1.200	39.2 3.000 61.0 7.000	92.1
0.200 27.2 1.400	42.2 3.500 65.8 7.500 45.0 4.000 70.2 0.000	95.3
0.400 39.9 1.800	47.7 4.500 74.3 8.500	101.3
0.500 39.9 2.000	50.2 5.000 78.2 9.000	104.1
0.600 39.4 2.200	52.5 5.500 81.9 9.500	106.9
0.800 37.3 2.400	54.8 6.000 85.4 56.9 6.500 88.8	
1.000 33.9 2.000	50.9 0.500 88.8	
©198	2-2020 Innovyze	

Gondolin Land & Water Ltd		Page 3
15 Quayside Street	Mey BESS SuDS Design	
Edinburgh		
EH6 6EJ		Mirro
Date 02/11/2023 22:02	Designed by SD	Dcainago
File Mey BESS - S Checked by	ZR Innovyze	Diamage
Source Control 2020.1.3		
<u>Summary of Resul</u> Storm I Event Le	ts for 2 year Return Period Max Max Max Max Status evel Depth Control Volume (m) (m) (l/s) (m ³)	

15	min	Summer	0.075	0.075	4.9	163.7	0	K
30	min	Summer	0.102	0.102	8.8	224.1	0	K
60	min	Summer	0.133	0.133	14.0	291.6	0	K
120	min	Summer	0.161	0.161	19.4	354.9	0	K
180	min	Summer	0.176	0.176	22.4	388.7	0	K
240	min	Summer	0.187	0.187	24.6	413.2	0	K
360	min	Summer	0.200	0.200	27.3	443.2	0	K
480	min	Summer	0.208	0.208	28.9	462.1	0	K
600	min	Summer	0.213	0.213	29.8	473.2	0	K
720	min	Summer	0.216	0.216	30.3	478.3	0	K
960	min	Summer	0.216	0.216	30.4	480.0	0	K
1440	min	Summer	0.211	0.211	29.4	468.6	0	K
2160	min	Summer	0.200	0.200	27.3	443.9	0	K
2880	min	Summer	0.190	0.190	25.2	419.8	0	K
4320	min	Summer	0.173	0.173	21.8	381.3	0	K
5760	min	Summer	0.160	0.160	19.3	353.3	0	K
7200	min	Summer	0.151	0.151	17.4	331.8	0	K
8640	min	Summer	0.143	0.143	15.9	313.8	0	K
10080	min	Summer	0.136	0.136	14.7	299.6	0	K
15	min	Winter	0.084	0.084	6.1	183.1	0	K
30	min	Winter	0.114	0.114	10.8	250.6	0	K

Storm		Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	20.890	0.0	122.2	19	
30	min	Summer	14.564	0.0	183.5	33	
60	min	Summer	9.888	0.0	287.1	62	
120	min	Summer	6.625	0.0	392.9	120	
180	min	Summer	5.222	0.0	468.9	142	
240	min	Summer	4.397	0.0	529.4	172	
360	min	Summer	3.432	0.0	623.6	238	
480	min	Summer	2.892	0.0	703.5	306	
600	min	Summer	2.536	0.0	772.8	372	
720	min	Summer	2.273	0.0	832.3	438	
960	min	Summer	1.912	0.0	934.6	568	
1440	min	Summer	1.498	0.0	1097.6	822	
2160	min	Summer	1.176	0.0	1325.5	1188	
2880	min	Summer	0.987	0.0	1482.9	1556	
4320	min	Summer	0.771	0.0	1726.9	2288	
5760	min	Summer	0.648	0.0	1964.2	3000	
7200	min	Summer	0.565	0.0	2140.2	3744	
8640	min	Summer	0.505	0.0	2289.2	4488	
10080	min	Summer	0.459	0.0	2416.1	5152	
15	min	Winter	20.890	0.0	140.7	19	
30	min	Winter	14.564	0.0	210.0	33	
		©1	982-20	20 Inno	vyze		

Gondolin Land & Water Ltd						Page 4
15 Quayside Street	Mey	7 BESS	SuDS D	esign		
Edinburgh						
EH6 6EJ						Micro
Date 02/11/2023 22:02	Des	igned	by SD			
File Mey BESS - S Checked by	ZR	Innov	yze			Dialitage
Source Control 2020.1.3						
<u>Summary of Resu</u> Storm Event 1	lts Max Level	for 2 Max Depth (m)	year R Max Control	eturn Max Volume (m ³)	Period Status	
	·/	,	(_, 0,	···· /		
60 min Winter (J.148	0.148	16.9	325.6	OK	

120	min	Winter	0.180	0.180	23.2	397.0	0	Κ
180	min	Winter	0.195	0.195	26.3	432.3	0	Κ
240	min	Winter	0.206	0.206	28.5	456.7	0	Κ
360	min	Winter	0.217	0.217	30.5	481.1	0	Κ
480	min	Winter	0.222	0.222	31.4	492.7	0	Κ
600	min	Winter	0.224	0.224	31.7	496.4	0	Κ
720	min	Winter	0.223	0.223	31.5	494.4	0	Κ
960	min	Winter	0.218	0.218	30.7	483.8	0	Κ
1440	min	Winter	0.205	0.205	28.3	455.2	0	Κ
2160	min	Winter	0.188	0.188	24.8	415.8	0	Κ
2880	min	Winter	0.174	0.174	22.0	383.9	0	Κ
4320	min	Winter	0.154	0.154	18.1	339.4	0	Κ
5760	min	Winter	0.141	0.141	15.5	309.5	0	Κ
7200	min	Winter	0.131	0.131	13.7	287.7	0	Κ
8640	min	Winter	0.123	0.123	12.3	270.8	0	Κ
10080	min	Winter	0.117	0.117	11.3	257.1	0	Κ

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	9.888	0.0	324.5	60
120	min	Winter	6.625	0.0	443.1	116
180	min	Winter	5.222	0.0	528.4	144
240	min	Winter	4.397	0.0	596.2	180
360	min	Winter	3.432	0.0	701.9	254
480	min	Winter	2.892	0.0	791.4	328
600	min	Winter	2.536	0.0	869.2	398
720	min	Winter	2.273	0.0	936.0	464
960	min	Winter	1.912	0.0	1050.9	598
1440	min	Winter	1.498	0.0	1234.3	852
2160	min	Winter	1.176	0.0	1486.9	1232
2880	min	Winter	0.987	0.0	1663.6	1588
4320	min	Winter	0.771	0.0	1938.9	2332
5760	min	Winter	0.648	0.0	2201.5	3056
7200	min	Winter	0.565	0.0	2399.1	3816
8640	min	Winter	0.505	0.0	2566.9	4496
10080	min	Winter	0.459	0.0	2711.5	5240

15 Quayside Street	Mey	BESS S	uDS De	esign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:02	Desi	gned b	y SD			
File Mev BESS - S Checked by	ZR I	nnovvze	2			Drainage
Source Control 2020 1 3		- 1	-			
Summary of Resul	ts fo	or 10 v	ear R	eturn	Period	
<u>bullinary or Resur</u>	<u>. CS</u> IC	<u>) I IO Y</u>		CCUIII	101100	
Storm	Max	Max	Max	Max	Status	
Event I	evel 1	Depth Co	ntrol	Volume	202022	
	(m)	(m) ((l/s)	(m³)		
	107	0 1 0 7	0 5	004 0	0.77	
15 min Summer (146	0.10/	9.5	234.2	OK	
60 min Summer 0).187	0.140	24.7	414.1	OK	
120 min Summer C	.222	0.222	31.4	493.4	0 K	
180 min Summer C	.242	0.242	34.7	537.3	ОК	
240 min Summer C	.255	0.255	36.8	568.2	ОК	
360 min Summer C	.272	0.272	38.4	606.2	O K	
480 min Summer C	.281	0.281	38.6	626.9	ОК	
600 min Summer 0	.285	0.285	38.7	636.6	OK	
960 min Summer (283	0.283	38.7	633.3	OK	
1440 min Summer 0	.200	0.270	38.4	601.6	OK	
2160 min Summer C	.249	0.249	35.9	554.6	OK	
2880 min Summer C	.232	0.232	33.2	515.6	ОК	
4320 min Summer C	.207	0.207	28.6	458.2	ОК	
5760 min Summer C	.190	0.190	25.2	419.2	O K	
7200 min Summer C	.177	0.177	22.6	390.1	ОК	
8640 min Summer 0).166) 150	U.166 0 150	20.5	366.6	OK	
15 min Winter () 119	0.130	11 6	262 0	O K	
30 min Winter 0	0.163	0.163	19.8	359.4	O K	
Storm	Rain	Flooded	l Disch	narge I	'ime-Peak	
Event (n	m/hr)	Volume	Vol	ume	(mins)	
		(m³)	(m	3)		
15 min Summer 3	30.043	0.0) 1	90.6	19	
30 min Summer 2	21.101	0.0	2	283.4	33	
60 min Summer 1	4.328	0.0) 4	27.3	62	
120 min Summer	9.489	0.0) 5	574.1	108	
180 min Summer	7.407	0.0) 6	576.4	138	
240 min Summer	6.202	0.0	17	58.0	170	
360 min Summer	4.818	0.0	א יי ה ה	901.2	238 308	
600 min Summer	3.499	0.0	, s , 10)78.0	376	
720 min Summer	3.120	0.0	11	54.4	442	
960 min Summer	2.602	0.0	12	285.0	576	
1440 min Summer	2.014	0.0	14	189.8	824	
2160 min Summer	1.559	0.0	17	/63.9	1192	
2880 min Summer	1.299	0.0	19	958.7	1556	
4320 min Summer 5760 min Summer	1.005	0.0	v 22 1 25	. J 9 . 9 342 3	2288 3000	
7200 min Summer	0.726	0.0	· 23 1 27	/55.0	3744	
8640 min Summer	0.647	0.0	29	38.7	4416	
10080 min Summer	0.586	0.0	30	95.5	5152	
15 min Winter 3	30.043	0.0) 2	218.1	18	
30 min Winter 2	21.101	0.0) 3	322.5	32	
	82-20	20 Tnn	277777			
019	02-20	∠∪ ⊥1111(Jvyze			

Page 5

Gondolin Land & Water Ltd

Gondolin Land & Water Ltd					Page 6
15 Quayside Street	Mey	BESS St	uDS Desi	gn	
Edinburgh					
EH6 6EJ					Micco
$D_{a+a} = 0.2/11/2023 22.02$	Desi	aned by	7 90		
File Max DECC		'nnouuro	, SD		Drainage
FILE Mey BESS - S Checked L		movyze	2		
Source Control 2020.1.3					
<u>Summary of Res</u>	ults f	<u>or 10 y</u>	<u>ear Reti</u>	<u>ırn Period</u>	
				a	
Storm	Max	Max Donth Co	Max Ma	ax Status	
Event	(m)	Jepth Co	1/c $(m$	-ume	
	(111)	(111) (1/5) (1	.)	
60 min Winter	0.209	0.209	29.1 46	53.2 ОК	
120 min Winter	0.249	0.249	35.9 55	64.4 ОК	
180 min Winter	0.269	0.269	38.4 59	99.6 OK	
240 min Winter	0.283	0.283	38.7 63	31.6 ОК	
360 min Winter	0.297	0.297	38.9 66	54.9 ОК	
480 min Winter	0.302	0.302	39.0 67	0.0 O K	
600 min Winter	0.302	0.302	39.0 67	4.8 ОК	
720 min Winter	0.298	0.298	38.9 66	6.5 ОК	
960 min Winter	0.286	0.286	38.7 63	39.1 ОК	
1440 min Winter	0.260	0.260	37.5 57	9.1 OK	
2160 min Winter	0.231	0.231	32.9 51	.2.3 OK	
2880 min Winter	0.210	0.210	29.2 46	04.4 OK	
4520 min Winter	0.164	0.164	20.1 36	12.5 OK	
7200 min Winter	0.152	0.152	17 6 33	845 OK	
8640 min Winter	0.142	0.142	15.8 31	3.4 ОК	
10080 min Winter	0.135	0.135	14.4 29	96.6 ОК	
Storm	Rain	Flooded	Discharg	e Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
60 min Winter	14.328	0.0	481.	7 60	
120 min Winter	9.489	0.0	646.	2 114	
180 min Winter	7.407	0.0	760.	9 142	
240 min Winter	6.202	0.0	852.	3 182	
360 min Winter	4.818	0.0	997.	1 260	
480 min Winter	4.025	0.0	1113.	0 334	
600 min Winter	3.499	0.0	1211.	0 406	
720 min Winter	3.120	0.0	1296.	8 476	
960 min Winter	2.602	0.0	1443.	4 608	
1440 min Winter	2.014	0.0	1673.	7 854	
2160 min Winter	1.559	0.0	1977.	9 1232	
2880 min Winter	1.299	0.0	2196.	7 1588	

©1982-2020 Innovyze

4320 min Winter 1.005 0.0 2536.2

5760 min Winter0.8370.02848.97200 min Winter0.7260.03087.78640 min Winter0.6470.03294.510080 min Winter0.5860.03472.9

Gondolin Land & Water Ltd						Page 7
15 Quayside Street	Mey	BESS Si	DS De	esign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:03	Desi	gned by	y SD			
File Mey BESS - S Checked b	y ZR I	nnovyze	5			Digitigh
Source Control 2020.1.3	-	-				
Summary of Res	ults fo	or 30 v	ear R	eturn	Period	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth Co	ntrol	Volume		
	(m)	(m) (1/s)	(m³)		
15 min Summer	0.133	0.133	14.0	292.4	ОК	
30 min Summer	0.183	0.183	23.8	404.1	ОК	
60 min Summer	0.235	0.235	33.7	522.3	0 K	
120 min Summer	0.280	0.280	38.6	624.3	0 K	
180 min Summer	0.305	0.305	39.1	682.8	O K	
240 min Summer	0.322	0.322	39.3	723.1	0 K	
360 min Summer	0.344	0.344	39.6	772.5	O K	
480 min Summer	0.355	U.355 0 360	39.7 30 7	/98.4	OK	
000 min Summer 720 min Summer	U.30U 0 361	U.36U N 361	39.1 39.7	01U.4 813 5	0 K	
960 min Summer	0.301	0.301	39.7	803 7	O K O K	
1440 min Summer	0.337	0.337	39.5	756.6	0 K	
2160 min Summer	0.301	0.301	39.0	673.9	0 K	
2880 min Summer	0.271	0.271	38.4	605.5	ОК	
4320 min Summer	0.237	0.237	33.9	525.9	ΟK	
5760 min Summer	0.214	0.214	29.9	473.9	O K	
7200 min Summer	0.198	0.198	26.8	437.3	ΟK	
8640 min Summer	0.185	0.185	24.2	408.6	ОК	
10080 min Summer	0.175	0.175	22.3	386.8	ОК	
15 min Winter 30 min Winter	0.149	0.149	1/.U 29 1	327.3	OK	
SU MILL WINCEL	0.204	0.204	20.1	432.2	ΟK	
Storm	Rain	Flooded	Disch	arge T	ime-Peak	
Event	(mm/hr)	Volume	Vol	ume	(mins)	
		(m³)	(m	³)		
15 min Summer	37.652	0 0	0	248.7	18	
30 min Summer	26.716	0.0	2	370.3	33	
60 min Summer	18.262	0.0	5	51.8	62	
120 min Summer	12.059	0.0	7	36.9	112	
180 min Summer	9.374	0.0	8	363.4	144	
240 min Summer	7.821	0.0	g	963.2	178	
360 min Summer	6.040	0.0	11	19.2	248	
480 min Summer	5.023	0.0	12	243.2	318	
600 min Summer	4.349	0.0	13	127 0	386	
960 min Summer	3.000 3.202	0.0	15	591 6	4 J 0 5 8 8	
1440 min Summer	2.464	0.0	18	31.3	852	
2160 min Summer	1.892	0.0	21	44.9	1212	
2880 min Summer	1.568	0.0	23	368.9	1560	
4320 min Summer	1.203	0.0	27	12.1	2292	
5760 min Summer	0.996	0.0	30	26.6	3000	
7200 min Summer	0.860	0.0	32	263.6	3744	
8640 min Summer	0.762	0.0	34	167.2	4416	
10080 min Summer	0.688	0.0	36	04U.4	5152	
30 min Winter	26.716	0.0	2	20.2	±0 32	
	20.110	0.0	7		52	
©1	982-20	20 Innc	ovyze			
01						

Gondolin Land & Wate	er Ltd						Page 8
15 Quayside Street		Mey	BESS S	SuDS D	esign		
Edinburgh		-			2		
							MICro
Date 02/11/2023 22:0	3	Desi	igned k	by SD			Drainago
File Mey BESS - S	Checked b	y ZR I	Innovyz	e			Diamage
Source Control 2020.	1.3						
Summ	ary of Resi	ilts f	or 30	vear R	eturn	Period	
<u></u>		<u> </u>	01 00	1041 1	<u>o o u z m</u>	101104	
	Storm	Max	May	Max	Max	Status	
	Event	Level	Depth C	ontrol	Volume	202022	
		(m)	(m)	(1/s)	(m ³)		
	50 min Winter	0.263	0.263	38.0	586.1	O K	
12	20 min Winter	0.318	0.318	39.2	712.1	O K	
18	30 min Winter	0.344	0.344	39.6	772.9	0 K	
24	10 min Winter	0.361	0.361	39.7	813.3	ОК	
30	50 min Winter	0.380	0.380	39.8	858.4	O K	
48	30 min Winter	0.387	0.387	39.9	874.9	O K	
60)0 min Winter	0.387	0.387	39.9	875.1	ОК	
12	20 min Winter	0.383	0.383	39.9	865.2	OK	
91	0 min Winter	0.368	0.368	39.8	829.2	OK	
214	10 min Winter	0.327	0.327	39.4 39.1	/34.3 607 5	OK	
210	0 min Winter	0.272	0.272	30.4	539 2	OK	
433	0 min Winter	0.242	0.242	28 3	455 3	0 K	
576	50 min Winter	0.184	0.184	24.0	405.8	0 K	
720	0 min Winter	0.168	0.168	20.9	371.7	οĸ	
864	10 min Winter	0.157	0.157	18.7	346.4	ΟK	
1008	30 min Winter	0.148	0.148	17.0	326.3	ОК	
	Storm	Rain	Floode	d Disch	narge T	ime-Peak	
	Event	(mm/hr)	Volume	e Vol	ume	(mins)	
			(m³)	(m	³)		
) min Minter	10 000	· ·	0 1	501 O	60	
10) min Winter	12 050			228 6	0U 116	
120) min Winter	12.0JS 9 37/	, U. L N	0 0	20.0 970 2	166	
240) min Winter	7.821	. 0.	0 10)82.0	190	
.360) min Winter	6.040) 0.	0 12	256.9	268	
480) min Winter	5.023	3 O.	0 13	395.8	346	
600) min Winter	4.349	0.	0 15	512.4	422	
720) min Winter	3.866	5 O.	0 16	514.0	494	
96) min Winter	3.208	ο.	0 17	786.6	636	
1440) min Winter	2.464	٤ O.	0 20)56.3	896	
2160) min Winter	1.892	2. 0.	0 24	104.7	1252	
2880) min Winter	1.568	β Ο.	0 26	556.2	1612	
4320) min Winter	1.203	β Ο.	0 30)42.9	2332	
576) min Winter	0.996	σ.	0 33	391.4	3048	
7200) min Winter	0.860	0.	0 36	557.4	3752	
8640) min Winter	0.762	ε. Ο.	U 38	386.6	4496	
1000) min 117	0	· ·	0 40		E 0 4 0	

©1982-2020 Innovyze

Gondolin Land & Water Ltd						Page 9
15 Quayside Street	Mey	BESS S	uDS D	esign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:03	Desi	aned b	v SD			
File Mey BESS - S Checked b	V ZR T	nnovvz	2			Drainage
Source Control 2020 1 3	1 111 1					
Summary of Resu	lts fo	r 100	vear	Return	Period	
<u></u>						
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth Co	ontrol	Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summer	0.169	0.169	21.1	373.0	ОК	
30 min Summer	0.234	0.234	33.5	520.0	ОК	
60 min Summer	0.305	0.305	39.1	682.9	ОК	
120 min Summer	0.371	0.371	39.8	837.0	O K	
180 min Summer	0.403	0.403	39.9	912.0	ОК	
240 min Summer	U.424 0 450	U.424 0 450	40.0 20 0	962.2 1023 2	O K	
480 min Summer	0.464	0.464	40.0	1056.5	OK	
600 min Summer	0.471	0.471	40.0	1072.1	0 K	
720 min Summer	0.472	0.472	40.0	1076.6	ОК	
960 min Summer	0.468	0.468	40.0	1065.7	0 K	
1440 min Summer	0.443	0.443	40.0	1005.7	ОК	
2160 min Summer 2880 min Summer	0.395	0.395	39.9	892.1	OK	
4320 min Summer	0.282	0.282	38.6	630.7	0 K	
5760 min Summer	0.247	0.247	35.6	550.6	ОК	
7200 min Summer	0.225	0.225	32.0	500.5	O K	
8640 min Summer	0.209	0.209	29.0	462.9	O K	
10080 min Summer	0.197	0.197	26.6	435.6	ОК	
15 min Winter 30 min Winter	0.189	0.189	25.0	417.5 582 9	OK	
JU MINUTEL	0.202	0.202	57.0	502.5	0 10	
Storm	Rain	Flooded	l Discl	harge T	ime-Peak	
Event	(mm/hr)	Volume	Vol	ume	(mins)	
		(m³)	(m	13)		
15 min Summer	48.221	0.0) (330.2	18	
30 min Summer	34.598	0.0) 4	493.2	33	
60 min Summer	23.826	0.0) '	728.0	62	
120 min Summer	15.683	0.0) (966.4	120	
180 min Summer 240 min Summer	10 086	0.0) 1'	123.6 249 8	196	
360 min Summer	7.736	0.0) 14	441.3	262	
480 min Summer	6.402	0.0) 15	592.1	332	
600 min Summer	5.521	0.0) 1'	717.5	404	
720 min Summer	4.889	0.0) 18	826.0	472	
960 min Summer	4.034	0.0) 20) 21	JU9.2	608	
2160 min Summer	2.339	0.0) 20	656.5	1256	
2880 min Summer	1.927	0.0) 29	916.6	1616	
4320 min Summer	1.465	0.0) 33	310.9	2332	
5760 min Summer	1.204	0.0) 30	663.5	3000	
7200 min Summer	1.034	0.0) 39	928.9	3744	
0040 min Summer 10080 min Summer	0.821	0.0	ν 4.) Δ΄	100.0 347.6	4410 5152	
15 min Winter	48.221	0.0) (375.1	18	
30 min Winter	34.598	0.0) (558.0	32	
		<u> </u>				
©1	982-20	20 Inn	ovyze			

Gondolin Land & Water Ltd						Page 10
15 Quayside Street	Mey	BESS Su	iDS De	sign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:03	Desi	aned by	7 SD			
File Mey BESS - S Checked P		nnovvze				Drainage
Source Control 2020 1 2		IIIO V y Z C				
Source control 2020.1.5						
Summary of Pos	ilta fo	r 100	oor P	oturn	Poriod	
<u>Summary Of Rest</u>	<u>iils iu</u>	<u>, 100 y</u>	ear N	ecurn	reriou	
Storm	Max	Max 1	Max	Max	Status	
Event	Level	Depth Co	ntrol N	/olume		
	(m)	(m) (1/s)	(m³)		
60 min Winter	. 0 3/3	0 3/3	39 6	771 2	0 K	
120 min Winter	0.420	0.420	40.0	952.5	0 K	
180 min Winter	0.458	0.458	40.0 1	1042.9	0 K	
240 min Winter	0.480	0.480	40.0 1	L094.3	ΟK	
360 min Winter	0.504	0.504	40.0 1	151.1	ОК	
480 min Winter	0.515	0.515	40.0 1	178.6	ОК	
600 min Winter	0.517	0.517	40.0 1	184.3	ΟK	
720 min Winter	0.514	0.514	40.0 1	176.4	ОК	
960 min Winter	0.498	0.498	40.0 1	L137.0	ΟK	
1440 min Winter	0.447	0.447	40.0 1	L016.8	O K	
2160 min Winter	0.367	0.367	39.8	827.1	O K	
2880 min Winter	0.302	0.302	39.0	675.0	ОК	
4320 min Winter	0.239	0.239	34.2	530.4	ΟK	
5760 min Winter	0.209	0.209	29.0	462.8	ОК	
7200 min Winter	0.190	0.190	25.2	419.6	OK	
8640 min Winter	0.1/6	0.1/6	22.4	388.1	OK	
	0.100	0.100	20.2	504.0	0 R	
Storm	Rain	Flooded	Discha	arge T:	ime-Peak	
Event	(mm/hr)	Volume	Volu	me	(mins)	
		(m³)	(m³)		
60 min Winter	23.826	0.0	81	.8.5	60	
120 min Winter	15.683	0.0	108	35.5	118	
180 min Winter	12.136	0.0	126	53.9	174	
240 min Winter	10.086	0.0	140	0.20	226	
360 min Winter	7.736	0.0	161	7.5	284	
480 min Winter	6.402	0.0	178	36.5	362	
600 min Winter	5.521	0.0	192	26.9	440	
720 min Winter	4.889	0.0	204	18.6	516	
960 min Winter	4.034	0.0	225	3.9	664	
1440 min Winter	3.0/2	0.0	257	12.9	938	
2160 min Winter	2.339	0.0	291	1.0 (0.7	1672	
4320 min Winter	1 465	0.0	320 271	، در ۲ ۹	2332	
5760 min Winter	1 204	0.0	410)4.7	3056	
7200 min Winter	1.034	0.0	440)2.6	3752	
8640 min Winter	0.913	0.0	465	57.6	4496	
10080 min Winter	0.821	0.0	487	75.9	5240	

Gondolin Land & Water Ltd						Page 11
15 Quayside Street	Меу	BESS Su	iDS De	esign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:03	Desi	gned by	, SD			
File Mey BESS - S Check	ed by ZR I	innovyze				Digitigh
Source Control 2020.1.3	-					
Summary of	Results fo	or 200 v	ear F	Return	Period	
<u> </u>						
Storm	Max	Max 1	Max	Max	Status	
Event	Level	Depth Co	ntrol	Volume		
	(m)	(m) (1/s)	(m³)		
15 min Su	ummer 0.194	0.194	26.0	429.2	ОК	
30 min St	ummer 0.270	0.270	38.4	602.5	ОК	
60 min Su	ummer 0.357	0.357	39.7	803.2	O K	
120 min Su	ummer 0.437	0.437	40.0	992.0	O K	
180 min St	ummer 0.476	U.476 0 /00	40.0	11/0 7	0 K	
240 min Si 360 min Si	1000 1000 1000 1000 1000 1000 1000 100	0.499	40.0 40 0	1208 8	0 K	
480 min Si	ummer 0.543	0.543	40.0	1246.8	0 K	
600 min St	ummer 0.551	0.551	40.0	1265.3	ΟK	
720 min St	ummer 0.553	0.553	40.0	1271.2	O K	
960 min Su	ummer 0.549	0.549	40.0	1260.5	O K	
1440 min St 2160 min St	ummer 0.522	0.522	40.0	1195.1	OK	
2160 min St 2880 min St	ummer 0.415	0.400	40.0	938.8	0 K 0 K	
4320 min St	ummer 0.329	0.329	39.4	737.8	ОК	
5760 min Su	ummer 0.273	0.273	38.4	609.1	ОК	
7200 min Su	ummer 0.245	0.245	35.3	545.8	O K	
8640 min Su	ummer 0.225	0.225	32.0	500.3	ОК	
10080 min Si 15 min Wi	ummer 0.211	0.211	29.4	467.8	OK	
30 min W	Inter 0.303	0.303	39.0	677.3	ОК	
		0.000	00.0	0,7,10	0 10	
Storm	Rain	Flooded	Disch	arge T	ime-Peak	
Event	(mm/hr)	Volume	Volu	ime 3 V	(mins)	
		(m-)	(m-	-)		
15 min Sur	nmer 55.603	0.0	3	87.5	18	
30 min Sur	nmer 40.151	0.0	5	79.9	33	
60 min Sur	nmer 27.768	0.0	8	52.8	62	
I20 min Sur 180 min Sur	nmer 12.245	0.0	1 1 1 2	∠8.5 10 2	12U 180	
240 min Sur	nmer 11.676	0.0	14	50.9	210	
360 min Sur	nmer 8.922	0.0	16	66.0	278	
480 min Sur	nmer 7.362	0.0	18	34.7	346	
600 min Sur	nmer 6.333	0.0	19	74.0	416	
720 min Sur	nmer 5.597	0.0	20	94.2 96.2	484	
1440 min Su	nmer 3.489	0.0	22	07.8	894	
2160 min Sur	nmer 2.643	0.0	30	04.2	1280	
2880 min Sur	nmer 2.170	0.0	32	87.2	1648	
4320 min Sur	nmer 1.641	0.0	37	13.2	2376	
5760 min Sur 7200 min Sur	nmer 1.344	0.0	40	89.0	3048	
/200 min Sur 8640 min Sur	nmer 1.150	0.0	43 46	11.9	5/44 4488	
10080 min Sur	nmer 0.909	0.0	48	15.0	5152	
15 min Win	nter 55.603	0.0	4	39.5	18	
30 min Wir	nter 40.151	0.0	6	55.2	32	
	@1022_20	120 Thha	171770			

Gondolin Land & Water Ltd					Page 12
15 Quayside Street	Меу	BESS Su	DS Desi	gn	
Edinburgh					
EH6 6EJ					Micco
Date 02/11/2023 22:03	Desi	aned by	y SD		
File Mey BESS - S Checked	by ZR T	nnovvze			Drainage
Source Control 2020 1 2		IIIIO V y Z C			
Source control 2020.1.5					
Summary of Po	aulta fo	r 200 t	oor Poti	irn Poriod	
<u>Summary or Re</u>	<u>suits io</u>	<u>1 200 y</u>	ear rett	<u>ann feitidu</u>	
Storm	Max	Max I	Max Ma	ax Status	
Event	Level 1	Depth Co	ntrol Vol	ume	
	(m)	(m) (1	l/s) (m	³)	
60 min Winte	r 0 401	0 / 0 1	399990	62 O K	
120 min Winte	er 0.493 (0.493	40.0 112	6.8 OK	
180 min Winte	er 0.540 (0.540	40.0 123	9.5 ОК	
240 min Winte	er 0.568	0.568	40.0 130	6.2 ОК	
360 min Winte	er 0.593 (0.593	40.0 136	8.3 ОК	
480 min Winte	er 0.607 (0.607	40.0 140	3.6 ОК	
600 min Winte	er 0.612 (0.612	40.0 141	4.6 ОК	
720 min Winte	er 0.610 (0.610	40.0 140	9.8 ОК	
960 min Winte	er 0.594 (0.594	40.0 137	1.8 ОК	
1440 min Winte	er 0.541 (0.541	40.0 124	2.2 ОК	
2160 min Winte	er 0.449 (0.449	40.0 102	0.6 ОК	
2880 min Winte	er 0.367 (0.367	39.8 82	6.8 OK	
4320 min Winte	er 0.263 (0.263	38.1 58	6.5 ОК	
5760 min Winte	er 0.22/ 0	0.227	32.2 50	3.3 OK	
/200 min Winte	er 0.204 (or 0.188 (0.204	28.0 45	1.6 UK 5.8 OK	
10080 min Winte	= 0.100	0.138	24.9 41	5.8 ОК 81 ОК	
Storm	Rain	Flooded	Discharg	e Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
60 min Winter	r 27.768	0.0	958.	3 62	
120 min Winter	r 18.245	0.0	1267.	1 118	
180 min Winter	r 14.081	0.0	1470.	5 176	
240 min Winter	r 11.676	0.0	1628.	2 230	
360 min Winter	r 8.922	0.0	1869.	1 304	
480 min Winter	r 7.362	0.0	2058.	U 374	
600 min Winter	r 6.333	0.0	2214.	1 452 7 500	
/20 min Winter	r 5.59/	0.0	2348.		
960 Min Winter 1440 min Winter	r 3 1002	0.0	2010. 2021	∪ 68∠ 5 969	
2160 min Winter	r 2.409	0.0	3367	2 1364	
2880 min Winter	r 2.170	0.0	3684	7 1728	
4320 min Winter	r 1.641	0.0	4164.	7 2336	
5760 min Winter	r 1.344	0.0	4581.	3 3056	
7200 min Winter	r 1 150	0 0	1998	4 3752	
	T T T T O O	0.0	4090.	- 5752	
8640 min Winter	r 1.012	0.0	5168.	8 4496	

Gondolin Land & Water Ltd						Page 13
15 Quayside Street	Mey	BESS Su	IDS Des	sign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:01	Desi	gned by	sD			
File Mey BESS - S Checked k	V ZR I	nnovvze				Drainage
Source Control 2020.1.3	<u> </u>	4				
Summary of Results	for 20)0 vear	Retur	n Pei	riod (+42%)	
	101 20	<u>year</u>	neeur		100 (120)	
Storm	Max	Max 1	Max	Max	Status	
Event	Level 1	Depth Co	ntrol V	olume		
	(m)	(m) (1	1/s)	(m³)		
15 min Summer	0.272	0.272	38.4	607.5	ОК	
30 min Summer	0.383	0.383	39.9	863.6	O K	
60 min Summer	0.509	0.509	40.0 1	164.9	O K	
120 min Summer	0.633	0.633	40.0 1	465.7	ОК	
180 min Summer 240 min Summer	0.699 0 7/1	U.699 0 741	40.0 1	03U.1 735 7	OK	
360 min Summer	0.787	0.787	40.0 1	852.2	O K	
480 min Summer	0.812	0.812	40.0 1	917.9	O K	
600 min Summer	0.828	0.828	40.0 1	957.9	O K	
720 min Summer	0.837	0.837	40.0 1	981.0	O K	
960 min Summer 1440 min Summer	0.843	0.843 0.827	40.0 1	996.0	0 K 0 K	
2160 min Summer	0.776	0.776	40.0 1	825.5	ОК	
2880 min Summer	0.716	0.716	40.0 1	672.4	O K	
4320 min Summer	0.592	0.592	40.0 1	365.1	O K	
5760 min Summer	0.483	0.483	40.0 1	101.6	ОК	
8640 min Summer	0.334	0.334	39.5	749.2	0 K	
10080 min Summer	0.289	0.289	38.8	645.9	O K	
15 min Winter	0.304	0.304	39.0	681.7	O K	
30 min Winter	0.428	0.428	40.0	970.9	O K	
Storm	Rain	Flooded	Discha	rge T	ime-Peak	
Event	(mm/hr)	Volume	Volum	ne	(mins)	
		(m³)	(m³)			
15 min Our	70 050	0.0	EC	0 7	10	
30 min Summer	57.015	0.0	201 841	3.2	±0 33	
60 min Summer	39.431	0.0	122	1.9	62	
120 min Summer	25.908	0.0	161	3.2	122	
180 min Summer	19.995	0.0	187	1.0	182	
240 min Summer 360 min Summer	10.580	0.0	207	U.6 5 6	240	
480 min Summer	10.453	0.0	261	4.6	412	
600 min Summer	8.993	0.0	281	1.9	478	
720 min Summer	7.948	0.0	298	1.9	546	
960 min Summer	6.535	0.0	326	7.2	682	
1440 min Summer 2160 min Summer	4.954	0.0	370. 427	5.5 3.0	964 1364	
2880 min Summer	3.082	0.0	467	7.2	1760	
4320 min Summer	2.330	0.0	528	8.9	2512	
5760 min Summer	1.908	0.0	581	1.6	3232	
7200 min Summer	1.633	0.0	621-	4.3 8 0	3896	
10080 min Summer	1.290	0.0	685	1.4	5248	
15 min Winter	78.956	0.0	64	3.8	18	
30 min Winter	57.015	0.0	94	9.8	33	
	000 00	20				
C]	. 202-20	∠∪ IUNO	vyze			

Gondolin Land & Water Ltd						Page 14
15 Quayside Street	Mey	BESS Si	IDS D	esign		
Edinburgh						
EH6 6EJ						Micco
Date 02/11/2023 22:01	Desi	aned hy	7 SD			
Eilo Moy $PESS = S$ (backed k		- nnouuro	SD			Drainago
FILE MEY BESS - S CHECKED		movyze	:			J
Source Control 2020.1.3						
				_		
<u>Summary of Results</u>	for 2	<u>00 year</u>	Retu	ırn Per	riod (+42%)	_
Storm	Max	Max .	Max	Max	Status	
Event	(m)	(m) (1/s	(m ³)		
	()	()	_, _,	()		
60 min Winter	0.570	0.570	40.0	1312.8	O K	
120 min Winter	0.710	0.710	40.0	1658.5	ОК	
180 min Winter	0.787	0.787	40.0	1853.2	O K	
240 min Winter 360 min Winter	0.838 0.800	U.838 N 899	40.0 40.0	1983.3 2141 P	O K	
480 min Winter	0.932	0.932	40.0	2227.1	O K	
600 min Winter	0.945	0.945	40.0	2262.5	O K	
720 min Winter	0.949	0.949	40.0	2271.7	O K	
960 min Winter	0.951	0.951	40.0	2276.4	O K	
1440 min Winter	0.919	0.919	40.0	2192.4	0 K	
2160 min Winter	0.823	0.823	40.0	1945.8	OK	
2880 Min Winter 4320 min Winter	0.717	0.717	40.0	1179 5	0 K 0 K	
5760 min Winter	0.364	0.364	39.7	820.4	ОК	
7200 min Winter	0.275	0.275	38.5	613.5	ОК	
8640 min Winter	0.244	0.244	35.0	542.3	O K	
10080 min Winter	0.224	0.224	31.7	496.9	O K	
Storm	Rain	Flooded	Disch	harge T	ime-Peak	
Event	(mm/nr)	(m ³)	vo1 (m	ume 3)	(mins)	
		()	(,		
60 min Winter	39.431	0.0	13	371.6	62	
120 min Winter	25.908	0.0	18	309.7	120	
180 min Winter	19.995	0.0	20)98.3	178	
240 min Winter 360 min Winter	10.580	0.0	23	562 9	∠36 318	
480 min Winter	10.453	0.0	20	930.1	458	
600 min Winter	8.993	0.0	31	L50.5	562	
720 min Winter	7.948	0.0	33	340.5	608	
960 min Winter	6.535	0.0	36	658.6	742	
1440 min Winter	4.954	0.0	41	L45.2	1056	
2160 min Winter	3.753	0.0	47	/87.5	1492	
2000 min Winter 4320 min Winter	3.U82 2 330		5∠ 50	241.U 929 9	1900 2636	
5760 min Winter	1.908	0.0	65	510.8	3288	
7200 min Winter	1.633	0.0	69	962.4	3888	
8640 min Winter	1.437	0.0	73	348.6	4496	
10080 min Winter	1.290	0.0	76	581.2	5240	
	080-00	120 1222				

Appendix C

The Highland Council Compliance Certificates and SEPA FRA Checklist

APPENDIX C: SELF CERTIFICATION (overleaf)

FRA and DIA Guidance

Assessment Compliance Certificate

I certify that all reasonable skill, care and attention to be expected of a qualified and experienced professional in this field have been exercised in carrying out the attached Assessment. I also confirm that I maintain the required Professional Indemnity Insurance*. The report has been prepared in support of the below named development in accordance with the reporting requirements issued by The Highland Council.

Please select Assessment type:

Flood Risk Assessment	Drainage Impact Asse	ssment 🗹
Additional Information		
Assessment Ref No:	Assessment Revision:	First Issue
Assessment Date: 02/11/2023	Planning Application No:	
Name of Development: Mey BESS		
Address of Development: Land 500r	n West of Phillips Mains Mey	1
Name of Developer: Simec Atlantis	Energy	
Name and Address of		
Organisation preparing this Assessment:	and & Water Ltd - Quayside	Street, Edinburgh, EH6 6EJ
Name of Approver: Zak Ritchie	D	ate: 02/11/2023
Signed:		

Position Held: Managing Director

Qualification of person responsible for signing off this Assessment** C.WEM, C.Eng

- * Please attach appropriate evidence of Professional Indemnity Insurance
- ** A chartered member of a relevant professional institution

Section Agency Budican Dian Aranneachd na h-Alta

Flood Risk Assessment (FRA) Checklist

(SS-NFR-F-001 - Version 16 - Last updated 27/08/2019

This document must be attached within the front con	ver of any Flood	l Risk Assessments i	issued to Loc	al Planning Authorities (LPA) i	in support of a development pro	posal which may be a	t risk of flooding. The d	ocument
will take only a few minutes to complete and will ass	<u>ist SEPA in revi</u>	ewing FRAs, when c	onsulted by L	PAs. This document should n	ot be a substitute for a FRA.			
Development Proposal Summary								
Site Name:		Mey BESS						
Grid Reference:	Easting:	329600	Northin	g: 972473				
Local Authority:			Highland	Council				
Planning Reference number (if known):								
Nature of the development:		Infrastructure		If residential, state type:				
Size of the development site:		10	На					-
Identified Flood Risk:	Source:	Other		Source name:	None			
Land Use Planning			-					
Is any of the site within the functional floodplain? (refer to								
SPP para 255)		No		lf	yes, what is the net loss of storage?	m³		
Is the site identified within the local development plan?		No		Local Development Plan Name:		Year of Publication	C	
is the site identified within the local development plan?		INU		Allocation Number / Reference:				_
If yes, what is the proposed use for the site as identified in								
the local plan?		Select from List		If Other please specify:				1
Does the local development plan and/or any pre-application								
advice, identify any flood risk issues with or requirements for		No						
the site.				If so, please specify:				
What is the proposed land use vulnerability?		Essential Infrastructure		Do the proposals represent a	an increase in land use vulnerability?	No		
Supporting Information								
Have clear maps / plans been provided within the FRA		Vee						
(including topographic and flood inundation plans)?		res						
Has sufficient supporting information, in line with our								
Technical Guidance, been provided? For example: site		Vee						
plans, photos, topographic information, structure		res						
information and other site specific information.								_
Has a historic flood search been undertaken?		Yes		If flood	records in vicinity of the site please p	rovide details:		
Is a formal flood prevention scheme present?		No			If known, state the standard of prote	ection offered:		
Current / historical site use:		Agricultural / rough gra	zing					
Is the site considered vacant or derelict?		No						
Development Requirements								
Freeboard on design water level:		n/a	m					
Is safe / dry access and egress available?		Vehicular and Pedestrian			Min access/egress level:	m AOD		
Design levels:	Ground level:	n/a	m AOD		Min FFL:	mAOD		
Mitigation								
Can development be designed to avoid all areas at risk of		Vee						
flooding?		res						
Is mitigation proposed?		No						
If yes, is compenstory storage necessary?		No						
Demonstration of compensatory storage on a "like for like"		Select from List						
basis?		Gelect II OIII LISt						
Should water resistant materials and forms of construction		No						
be used?		NU						

PAGE 1 of 2

SEP	comont (EBA) Chookligt	
FIOOD RISK ASSE		(SS-NFR-F-001 - Version 16 - Last updated 27/08/2019
Hydrology		
Is there a requirement to consider fluvial flooding?	No	
Area of catchment:	km²	Is a map of catchment area included in FRA? Yes
Estimation method(s) used (please select all that apply):	Pooled Analysis	If Pooled analysis have group details been included? Select from List
	Single Site Analysis	
	Ennanced Single Site	
	FEH RRM	
	Other	If other (please specify methodology used):
Estimate of 200 year design flood flow:	m³/s	
Omed estimate:	m ³ /s	Method: N/A
Statistical Distribution Selected:	Select from List	Reasons for selection;
Hvdraulics		
		Software used: Select from List
Hydraulic modelling method:	Manning	If other please specify:
Number of cross sections:		
Source of data (i.e. topographic survey, LiDAR etc):	topographic survey	Date obtained / surveyed: Novmember 2022
Modelled reach length:	m	
Any changes to default simulation parameters?		
Model arid size		
Any structures within the modelled length?	Select from List	Specify, if combination:
Maximum observed velocity:	m/s	
Brief summary of sensitivity tests, and range:		
variation on flow (%)	%	Please specify climate change scenario considered: 1000-year plus 40% climate change
variation on channel roughness (%)	%	
blockage of structure (range of % blocked)	%	
boundary conditions:	Upstream	Downstream
(т) туре	FIDW Specify if other	Seect nom List
(2) does it influence water levels at the site?	Select from List	Specify in other.
Has model been calibrated (gauge data / flood records)?	Select from List	
Is the hydraulic model available to SEPA?	Select from List	
Design flood levels:	200 year N/A m AOD	200 year plus climate change N/A m AOD
Cross section results provided?	Select rom List	
Long section results provided?	Select from List	
Cross section ratings provided?		
Mass balance error	%	
Coastal		
Is there a requirement to consider coastal / tidal flooding?	No	
Estimate of 200 year design flood level:	m AOD	
Estimation method(s) used:	Select from List	If other please specify methodology used:
Allowance for climate change (m):	m	·
Allowance for wave action etc (m):	m	
Overall design flood level:	m AOD	
Comments		
Any additional comments:		
Approved by: Organisation:	Stephen Donnan Gondolin Land & Water Ltd 02/11/2023	

Drawings

v		
tten consent.	Gondolin accepts no liability for any amendments made by other persons	

/	LEGEND		
J Z	SITE BOUNDARY		
-stilling			
sautre			
onite.			
-ALIFE			
-Miller			
annie.			
anne.			
oddina			
Allin			
anne.			
autos autos	00 11/23 INITIAL ISSUE	GD	SD
*	REV DATE DESCRIPTION	BY	СНК
**	CLIENT: SIMEC ATLANTIS ENERGY		
* * *			
**	PROJECT: Mey BESS		
**	DRAWING TITLE: SITE LOCATION PLAN		
***	SCALE:		
**	1:10,000 @ A3 NOVEMBER 202	23	EV/·
*	FRDA-001		00
anne	DRAWING STATUS: FOR PLANNING		
alling	GONDOLIN LAND & WATER LTD 15 Quayside Street Edinburgh GC	ONDO	DLIN
	EH6 6EJ Registered Company No. SC706920	d & Wat	er

© This drawing and its content are the copyright of Gondolin Land & Water Ltd and may not be edited or reproduced except by prior written consent. Gondolin accepts no liability for any amendments made by other persons.

. //		ES				
	1. C	CONTO	JRS OBTAINED	OS TERRAIN 5 D	ATA.	
49.5						
			SITE BOUNDAR	Y		
			EXISTING CO INTERVALS)	NTOURS (0.5m		
		\succ	EXISTING WA	TERCOURSE / [RAIN	
	>	{	EXISTING CU	LVERT		
			OVERLAND F	LOWPATH		
19.5						
	00	11/23	INITIAL ISSUE		GD	SD
49.5	REV	DATE	DESCF	RIPTION	BY	СНК
57		CLIENT: SIMEC ATLANTIS ENERGY				
H						
$\left\{ \left \right\rangle \right\}$	PROJI Mey	ECT: / BES	S			
	DRAWING TITLE:					
	HY	DRO		OVERVIEW		
/ / / /	SCALE:					
	1:2,50	JU @ A3	MBER:	NOVMEBER 202	23	EV:
\$ C			FRDA-0	002		00
	DRAW	/ING ST/	ATUS: FOR PL	ANNING		
<u> </u>	GOND		ND & WATER I TD			
\geq	GOND 15 Qua Edinbu	OLIN LAN ayside Struurgh	ND & WATER LTD eet	GC	NDC	DLIN

© This drawing and its content are the copyright of Gondolin Land & Water Ltd and may not be edited or reproduced except by prior written consent. Gondolin accepts no liability for any amendments made by other persons.

Civil Engineering and Environmental Solutions

Gondolin Land and Water Ltd is a small, client friendly environmental and civil engineering consultancy business based in Scotland with coverage throughout the UK.

Office Address:

15 Quayside Street, Edinburgh, EH6 6EJ, UK

Registered Company No.

SC706920

Sectors:

Onshore Renewables & Storage | Infrastructure | Mining and Minerals | Rural Tourism & Recreation | Property & Urban Regeneration | Corporate, Industrial & Manufacturing | Waste Management